3.676 \(\int \sqrt {\cos (c+d x)} (a+b \cos (c+d x)) (A+C \cos ^2(c+d x)) \, dx\)

Optimal. Leaf size=134 \[ \frac {2 a (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {2 b (7 A+5 C) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 b (7 A+5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{21 d}+\frac {2 b C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d} \]

[Out]

2/5*a*(5*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*b
*(7*A+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*a*C*cos
(d*x+c)^(3/2)*sin(d*x+c)/d+2/7*b*C*cos(d*x+c)^(5/2)*sin(d*x+c)/d+2/21*b*(7*A+5*C)*sin(d*x+c)*cos(d*x+c)^(1/2)/
d

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3034, 3023, 2748, 2639, 2635, 2641} \[ \frac {2 a (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {2 b (7 A+5 C) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 b (7 A+5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{21 d}+\frac {2 b C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2),x]

[Out]

(2*a*(5*A + 3*C)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*b*(7*A + 5*C)*EllipticF[(c + d*x)/2, 2])/(21*d) + (2*b*
(7*A + 5*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(21*d) + (2*a*C*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (2*b*C*C
os[c + d*x]^(5/2)*Sin[c + d*x])/(7*d)

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3034

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (C_.)*sin[(e
_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*d*Cos[e + f*x]*Sin[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m
+ 3)), x] + Dist[1/(b*(m + 3)), Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*c*(m + 3) + b*d*(C*(m + 2) + A*(m
+ 3))*Sin[e + f*x] - (2*a*C*d - b*c*C*(m + 3))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \sqrt {\cos (c+d x)} (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \, dx &=\frac {2 b C \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2}{7} \int \sqrt {\cos (c+d x)} \left (\frac {7 a A}{2}+\frac {1}{2} b (7 A+5 C) \cos (c+d x)+\frac {7}{2} a C \cos ^2(c+d x)\right ) \, dx\\ &=\frac {2 a C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b C \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {4}{35} \int \sqrt {\cos (c+d x)} \left (\frac {7}{4} a (5 A+3 C)+\frac {5}{4} b (7 A+5 C) \cos (c+d x)\right ) \, dx\\ &=\frac {2 a C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b C \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{5} (a (5 A+3 C)) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{7} (b (7 A+5 C)) \int \cos ^{\frac {3}{2}}(c+d x) \, dx\\ &=\frac {2 a (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b (7 A+5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b C \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{21} (b (7 A+5 C)) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 a (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b (7 A+5 C) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 b (7 A+5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a C \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b C \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.69, size = 98, normalized size = 0.73 \[ \frac {\sin (c+d x) \sqrt {\cos (c+d x)} (42 a C \cos (c+d x)+70 A b+15 b C \cos (2 (c+d x))+65 b C)+42 a (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 b (7 A+5 C) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{105 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2),x]

[Out]

(42*a*(5*A + 3*C)*EllipticE[(c + d*x)/2, 2] + 10*b*(7*A + 5*C)*EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*
(70*A*b + 65*b*C + 42*a*C*Cos[c + d*x] + 15*b*C*Cos[2*(c + d*x)])*Sin[c + d*x])/(105*d)

________________________________________________________________________________________

fricas [F]  time = 0.57, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (C b \cos \left (d x + c\right )^{3} + C a \cos \left (d x + c\right )^{2} + A b \cos \left (d x + c\right ) + A a\right )} \sqrt {\cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((C*b*cos(d*x + c)^3 + C*a*cos(d*x + c)^2 + A*b*cos(d*x + c) + A*a)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 1.98, size = 401, normalized size = 2.99 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 C b \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-168 a C -360 C b \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (140 A b +168 a C +280 C b \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-70 A b -42 a C -80 C b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+35 A b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-105 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a +25 C b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a \right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2),x)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*C*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^
8+(-168*C*a-360*C*b)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(140*A*b+168*C*a+280*C*b)*sin(1/2*d*x+1/2*c)^4*co
s(1/2*d*x+1/2*c)+(-70*A*b-42*C*a-80*C*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+35*A*b*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-105*A*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a+25*C*b*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-63*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/
2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

mupad [B]  time = 2.31, size = 139, normalized size = 1.04 \[ \frac {2\,A\,b\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,A\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,C\,a\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,b\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(1/2)*(A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x)),x)

[Out]

(2*A*b*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3*d) + (2*A*a*ellipticE(c/2 + (d*x)/2
, 2))/d - (2*C*a*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*
x)^2)^(1/2)) - (2*C*b*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c
 + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)**2)*cos(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________